## For Test 2

GENERAL INSTRUCTIONS: Do all the problems on the paper I've provided unless otherwise directed. (Problem 5 is to be done on the special page. Only Problem 7 is to be done on the test paper.) Be sure you number the pages and the problems clearly. Answer all problems in sentences, even those requiring a numerical or formulaic answer. (For example, if you were asked to differentiate $y=x^{2}$, your answer would be the sentence $y^{\prime}=2 x$.) Be sure to show your work. Your work, as well as your answers, will be graded.

A number of formulas are on the Precalculus Formula Sheet, including the Factorization Formula and some exponent and log laws. Also, if you need a formula or can't remember how to do something, ask me and I'll (possibly) tell you.

Here are some of the derivative rules we derived: Assuming $u$ is a function of $x$,
$\left.\left.\frac{d}{d x}\left(u^{n}\right)=n \cdot u^{n-1} \frac{d u}{d x} \quad \frac{d}{d x}(\sin u)\right)=\cos u \frac{d u}{d x} \quad \frac{d}{d x}(\cos u)\right)=-\sin u \frac{d u}{d x} \quad \frac{d}{d x}(\tan u)=\sec ^{2} u \frac{d u}{d x}$
$\frac{d}{d x}\left(e^{v}\right)=e^{u} \frac{d u}{d x} \quad \frac{d}{d x}(\ln u)=\frac{1}{u} \cdot \frac{d u}{d x} \quad \frac{d}{d x}\left(\sin ^{-1} u\right)=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x} \quad \frac{d}{d x}(\arctan \mathrm{u})=\frac{1}{1+\mathrm{u}^{2}} \frac{d u}{d x} \quad$ (See below.)

## PLEASE: DO NOT FORGET TO USE THE CHAIN RULE, THE PRODUCT RULE, THE QUOTIENT RULE, ETC. WHEN THEY APPLY!

Also, you may use these special limits where necessary:

$$
\lim _{h} \frac{e^{h}-1}{h}=1 \quad \lim _{h} \frac{\sin h}{h}=1 \quad \lim _{h} \frac{\cos h-1}{h}=0 \quad \text { If } P \text { is a polynomial, then } \lim _{x} P(x)=P(a) \text {. }
$$

Here is the derivation of the formula for $\frac{d}{d x}(\arctan x)$, using the derivative of an inverse function procedure and implicit differentiation:

Let $\mathrm{y}=\arctan \mathrm{x}$. Then $\tan \mathrm{y}=\mathrm{x}$. Differentiate both sides with respect to x to get
$\frac{d}{d x}(\tan y)=\frac{d}{d x}(x)$. Since $y$ is a function of $x$, the left side is $\sec ^{2} y \cdot \frac{d y}{d x}$ and the right side is 1.
$\sec ^{2} y \cdot \frac{d y}{d x}=1$. Solve this equation for $\frac{d y}{d x}$ :
$\frac{d y}{d x}=\frac{1}{\sec ^{2} y}$. Since $\frac{1}{\sec y}=\cos y$ and $y=\arctan x$, then $\frac{d y}{d x}=(\cos y)^{2}=(\cos \arctan x)^{2}$.
From trigonometry, we know $\cos \arctan x=\frac{1}{\sqrt{1+x^{2}}}$ so

$$
\begin{aligned}
\frac{\mathrm{dy}}{\mathrm{dx}}=\left(\frac{1}{\sqrt{1+\mathrm{x}^{2}}}\right)^{2} & =\frac{1}{1+\mathrm{x}^{2}} . \\
\frac{\mathrm{d}}{\mathrm{dx}}(\arctan \mathrm{x}) & =\frac{1}{1+\mathrm{x}^{2}}
\end{aligned}
$$



